The True Task & Optimal Solutions

100% Renewable Electricity within a Trans-European Supergrid

Dr.-Ing. Dipl.-Phys. G. Czisch

preliminary questions:

Is it possible to come to a totally renewable electricity supply? (Potentials, Technology, Temporal Production Behavior) YES

> Can we afford that? (Cost)

How could that work in an optimal case?

Utilisation of the renewable potentials for a common electricity supply interconnected within a strong international grid => affordable supply

Achieving goals of development policy & climate politics in a multilateral win-win strategy

Electricity Production with Hydropower

Storage Type

River Runoff Type

Photo source, VSE

Storage Hydro Power in Europe: *Rated Power, Storage Capacity and Annual Energy Production*

Data of UCTE 1998	Reservoir and mixed pumped Storage	đ	Storage CapacityofReservoir and mixedpumped Storage	Annual Energy Prod. of Reservoir and mixed pumped Storage
Sovenia/Croatia		1,4	1,8	?
Swizerland		8,2	8,4	18,0
Serbia and Montenegro		2,0	2,0	?
Portugal		2,1	2,6	4,2
Austria		5,6	3,2	7,0
Luxenburg		0,0	0,0	0,0
Italy		7,5	7,9	17,6
Greece		1,9	24	2,8
France		11,6	9,8	18,2
Germany		1,4	0,3	1,1
Belgium		0,0	0,0	0,0
Spain		7,7	18,4	16,7
Sum of UCTE		49	57	86
Dataof				
NORDEL				
Nma		273	841	1126
Finland		29	49	126
Sveden		162	337	636
Sum of NORDEL		46	123	189
Sumof				
NURLEL+UCIE		96	180	2/5/

1 Month EU-consumption

>

Solar Thermal Power Plant of SEGS Type

Photo source: http://www.kjcsolar.com/24bit/segs0046.jpg

Principle of a Solar Thermal Power Plant

Heat Output of Solar Fields for SEGS (Solar Thermal Power Plants)

Comparison of the Average Electricity Production (DEZ 🗇 Jul) from SEGS Solar Thermal Power Plants (Monthly Mean of 10 Years)

Met.data: ECMWF and NCEP

Transmission of Electricity

Photo source: http://www.nrel.gov/data/pix/searchpix.cgi G. Czisch, Barcelona, 080606 Some Estimated Maximum Net Transfer Capacities within UCTE and to its Neighbours in Winter 2004/2005 [MW]

High-Voltage-Direct-Current (HVDC) Transmission is a state-of-the-art technology able to transport elctricity over far distances with low losses and for low costs

Costs of Electricity Production with SEGS Solar Thermal Power Plants

Site		lberian Peninsula	Southern Morocco	Mauritania	Brügge Belgium	SEGS Solar Power Plant	Assumptio	ns	Costs	
Heat Production	[kWh/m ²]	610	1140	1190	300	Solar Mutiple Solar Field	2,5 185	[€/m²]	2775	[€/kW _{el. rated}]
Production (incl. 2 Weeks						Storage Capacity Storage Thermal Power Plant	14 60 525	[FLH] [€/kWhel] [€/kWel]	840 525	[€/kWel. rated] [€/kWel. rated]
Revision and 97% Availability)	[FLH/a]	3000	5570	5820	1470	Total Investment (I) Live Time	25	[a]	4140	[€/kWel. rated]
Cost of Electricity	[€ct/kWh]	13,9	7,5	7,2	28,4	O & M Costs Insurance Costs Interest	2% 1% 5%	[% _{Inv estment} /a] [% _{Inv estment} /a] [%/a]		
Distance to Kassel	[km]	2500	4400	5300	500	Annual Costs η Power Plant η Storage	37% 92% 70%	[%] [%]	418 [€/(kWel.rated a)
Sea Cable Legth included	[km]	0	40	40	0	HVDC-Syste	70% M	L ^{70]} Assumptions		1 1 1 1 1
Cost of Transport	[€/(kW _{el.} a)]	24	37	42	13	Rated Power Voltage Kind of HVDC Converter		5 + <i>-</i> 600	Do	[GW] [kV] uble Bipol
Losses due to Transport		6%	13%	16%	2%	HVDC Converter Station [I Overhead Line [H	Häusler 1999] läusler 1999]	2 * 60 70	[€/k\ [€/(k	Vel. Nennl.] W*1000 km)]
Cost of Electricity in Kassel	[€ct/kWh]	15,2	9,0	9,0	29,4	Seekable Live Time O & M Costs Interest		700 25 1% 5%	[€/(k [% ₁	W*1000 km)] 25 a _{nv estment} /a]

Wind Energy

Photo source: http://www.nrel.gov/data/pix/searchpix.cgi G. Czisch, Barcelona, 080606

Mean Annual Production of 1.5 MW Variable Speed Wind Turbines (HH = 80 m) in Full Load Hours [FLH]

Comparison of the Average Electricity Production (Jul ⇔ Jan) from Wind Energy (Monthly Mean of 15 Years)

Met. Data: ECMWF, ERA-15, 1979-1992

Mean Annual Production of 1.5 MW Variable Speed Wind Turbines (HH = 80 m) on Land Sites in Europe and its Neighbourhood

Monthly Mean Electricity Production of Wind Power within Selected Favourable Regions at Land Sites and Electricity Demand

Meteorological data: ECMWF, ERA-15, 1990

Monthly Mean Electricity Production of Wind Power within Selected Favourable Regions at Land Sites and Electricity Demand

Meteorological data: ECMWF, ERA-15, 1990

Monthly Mean Electricity Production of Wind Power within Selected Favourable Regions at Land Sites and Electricity Demand

Meteorological data: ECMWF, ERA-15, 1990

Potential Common Electricity System

Population 1.1 billion Inhabitants

Electricity Consumption 4000 TWh/a

> Largest Distance 8000 km Northwest-Siberia ⇔ South-Mauritania

Annual Electricity Production by Type with Collective Demand, Transport, Surplus and Costs of Electricity

Cost of Electricity (CoE) for Base Scenario (BS) and National Economies

- Cost of Electricity Production in Base Scenario (including: Production, HVDC Transmission and Storage)
 CoE ≅ 4.6 €ct/kWh
- Relation of Costs to National Income of EU-15 & Norway Σ CoE \cong 1.1 % of GDP
- Today's Expenses for Electricity ≅ 2.2 % of GDP (Germany today > 3%)
- Thereof for Production ≅ 0.8 % of GDP
- Costs difference BS ⇔ Today ≅ 0.3 % of GDP
- Further Progress in Renewable Technology => Cost Reduction > 30%
- => A future renewable electricity supply could produce cheaper electricity than our current conventional system.
- Prices at EEX: German-Baseload-Cal-07 already exceeded 6 €ct/kWh

Annual Electricity Production by Type, und Costs of Electricity different Scenarios

Mean Annual Production of 1.5 MW Variable Speed Wind Turbines (HH = 80 m) on Land Sites in Europe and its Neighbourhood

Electricity Demand 1998 UCTE & NODEL: 2100 TWh

Potential Wind Energy Prod. on land sites with more than 1500 FLH at 4 – 8 MW/km²: 120 000 – 240 000 TWh

Mean Prod. at this sites: 2050 FLH

Meteorological data: ECMWF, ERA-15, 1979-1992

Moroccan Wind Potentials (wind speed [m/s] 10 m above ground?)

Wind Atlas for Egypt (wind speed 50m above ground [m/s])

Source: Mortensen et. Al., Risø

Gulf of Suez – Wind resource (calculated by Risø National Laboratory)

- KAMM/WAsP Mesoscale modelling
 - domain rotated 30°
 - 60 x 81 grid points
 - 5 km grid point spacing
 - 28 vertical levels from0 to 6000 m a.s.l.
- Climatological data
 - NCEP/NCAR reanalysis
 data from 1965-98
- Current wind farm: Zafarana

Map and Explanation: Niels Gylling Mortensen and Gregor Giebel, Risø

Current Zafarana wind farm

Wind farm built 2002 Danida/KfW support (soft loans 3% over 15 years) 60 MW of Nordex turbines (picture from Nordex-online) 4570 Full Load Hours Still more than 1000€/kW investment cost Tariff paid = 2.9 USc/kWh leads to IRR = 5.36% This is without CO, value 10 /tCO₂ leads to IRR = 9.5% Numbers from UNEP Collaborating Centre at Risø (download from uccee.org/WindCDM)

Return on equity 19% with CDM at 2 – 10 US\$/tCO2 => 21 – 29%

embled mainly by Gregor Giebel, Risø

Cost Calculation for Electricity Production and HVDC Transmission

Example	Morocco Gerr	many		Wind Park		HVDC		Wind Park + HV	C
Financing				Production [FLh/a]	3400				
return on equity	19%			Investment [€/kW]	1000	Investment HVDC Converter [€/(2*1kW)]	120		
equitv ratio	0%					Distance [km]	4,4		
debt interest rate	5,0%					Investment overhead line [€/kW]	308		
						Losses	10,4%		
2,9 €ct/kWh		at produc	tion	Capital Return	5,0%	Capital Return	5,0%		
		site		Calcul. Lifespan [a]	20	Calcul. Lifespan [a]	25		
	_	•		Annuity	8,0%	Annuity	7,1%		
				O&M [% of IV/a]	2,0%	O&M [% of IV/a]	1,5%		
4,5 €ct/kWh with transport		port	O&M costs [€/kW/a]	20	O&M costs [€/kW/a]	6,4			
				Annual Costs		Annual Costs		Annual Costs	
				[€/(kW a)]	100	[€/(kW a)]	36,79	[€/(kW a)]	137
Examples	Offshore for	Morocco Egy	/pt						
	Switzerland	Germany Ge	rmany			without losses		without losses	
Production				Production Costs	2 95	Costs of Transmission		Costs of Electricity	
[FLh/a]	3500	3400	5000	[€ct/kWh]	2,00	System [€ct/kWh]	1,08	[€ct/kWh]	4,03
Investment Wind Park [€/kW]	2000	1000	1000			with losses		with losses	
Distance [1000km]	1,0	4,4	4,8			Total Transmission costs [€ct/kWh]	1,55	Total Costs of Electricity [€ct/kWh]	4,499
Transmission Losses	3,0%	10,4%	16,3%					Total Costs of Losses [€ct/kWh]	0,47

Expected impact and development prospects of a wind energy cooperation between Morocco and the EU

Assumption: In Morocco, 10% of EU electricity consumption are produced from wind energy for export to Europe.

- This electricity production for the EU corresponds to roughly 16 times the of today's Moroccan electricity consumption.
- This would demand for roughly 5% of the Moroccan wind potential.
- The total investment in WTC would only be about 0.8% of the EU GDP.
- The total investment in WTC is roughly equivalent to 200% of the Moroccan GDP.
- This option would open up completely new development prospects.
- In Morocco it could be generated an economic growth in the high single digit percentage range over many years.
- Since the production of large parts of the wind turbines are relatively easy it can be expected that the vertical range of manufacture in Morocco soon would receive a high level and thereby the dramatic unemployment could quickly be reduced.

Summary and Conclusion

- There are enough renewables for all needs.
- The bigger the catchment area the better temporal behaviour.
- Backup and storage are existent.
- The grid must be reinforced.
- Costs for backup and HVDC lines would not dominate.
- Also the cost of electricity of a fully renewable electricity supply would be quite reasonable.
- Now politics and economy are responsible, now they must act!
- For Europe the investment in renewable energies offers an interesting combination of climate protection and development strategy.

EU Feed in Law with Special Tariffs for Renewable Electricity from Neighbour Countries Possible Strategy for a Large Scale Implementation

Example: Production of Wind Power in S-Morocco (conservative 3400VLh)

Phase 1 up to 1 GW (limiting factor capacity of Moroccan electricity system)

Cost of electricity from wind power (economic assumption) < 3€ct/kWh IR=5%/a, life time=20a, O&M=2% of Invest./a

┛	cost of electricity from wind power (business assumption = BA)						
	20% return on equity 30% equity		< 4 €ct/kWh				
	value of CDM (20 €/tCO2, 0,6 kgCO2/kWhel)	ca.	- 1.2 €ct/kWh				
	market price of electricity from wind power		- 2.0 €ct/kWh				
	remainder covered by feed in tariff		0.8 €ct/kWh				

Phase 2 up to 5 GW (feed in via HVDC in existing net of South Spain)

- costs for HVDC-line inclusive losses for BA
- remainder covered by feed in tariff

Phase 3 more than 100GW technically possible (feed in via different HVDC systems to many different points within the UCTE-Network)

- costs for HVDC-lines inclusive losses for BA
- remainder covered by feed in tariff

<1,8 €ct/kWh 2.6 €ct/kWh

<1,2 €ct/kWh

2.0 €ct/kWh

Gregor Czisch gczisch@iset.uni-kassel.de +49-561-7294-359